SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:hh ;pers:(Alonso Fernandez Fernando 1978);pers:(Englund Cristofer 1977)"

Sökning: LAR1:hh > Alonso Fernandez Fernando 1978 > Englund Cristofer 1977

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvidsson, Moa, et al. (författare)
  • Drone Navigation and License Place Detection for Vehicle Location in Indoor Spaces
  • 2024
  • Ingår i: Lect. Notes Comput. Sci.. - Heidelberg : Springer Science and Business Media Deutschland GmbH. - 9783031495519 - 9783031495526 ; , s. 362-374
  • Konferensbidrag (refereegranskat)abstract
    • Millions of vehicles are transported every year, tightly parked in vessels or boats. To reduce the risks of associated safety issues like fires, knowing the location of vehicles is essential, since different vehicles may need different mitigation measures, e.g. electric cars. This work is aimed at creating a solution based on a nano-drone that navigates across rows of parked vehicles and detects their license plates. We do so via a wall-following algorithm, and a CNN trained to detect license plates. All computations are done in real-time on the drone, which just sends position and detected images that allow the creation of a 2D map with the position of the plates. Our solution is capable of reading all plates across eight test cases (with several rows of plates, different drone speeds, or low light) by aggregation of measurements across several drone journeys. 
  •  
2.
  • Englund, Cristofer, 1977-, et al. (författare)
  • AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and Smart Traffic Control
  • 2021
  • Ingår i: Smart Cities. - Basel : MDPI. - 2624-6511. ; 4:2, s. 783-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Smart Cities and Communities (SCC) constitute a new paradigm in urban development. SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with internet of things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, Smart Traffic Control and Driver Modelling are described along with open research challenges and standardization to help introduce advanced driver assistance systems and automated vehicle functionality in traffic. To fully realize the potential of SCC, to create a holistic view on a city level, the availability of data from different stakeholders is need. Further, though AI technologies provide accurate predictions and classifications there is an ambiguity regarding the correctness of their outputs. This can make it difficult for the human operator to trust the system. Today there are no methods that can be used to match function requirements with the level of detail in data annotation in order to train an accurate model. Another challenge related to trust is explainability, while the models have difficulties explaining how they come to a certain conclusions it is difficult for humans to trust it. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  •  
3.
  • Rosberg, Felix, 1995- (författare)
  • Anonymizing Faces without Destroying Information
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Anonymization is a broad term. Meaning that personal data, or rather data that identifies a person, is redacted or obscured. In the context of video and image data, the most palpable information is the face. Faces barely change compared to other aspect of a person, such as cloths, and we as people already have a strong sense of recognizing faces. Computers are also adroit at recognizing faces, with facial recognition models being exceptionally powerful at identifying and comparing faces. Therefore it is generally considered important to obscure the faces in video and image when aiming for keeping it anonymized. Traditionally this is simply done through blurring or masking. But this de- stroys useful information such as eye gaze, pose, expression and the fact that it is a face. This is an especial issue, as today our society is data-driven in many aspects. One obvious such aspect is autonomous driving and driver monitoring, where necessary algorithms such as object-detectors rely on deep learning to function. Due to the data hunger of deep learning in conjunction with society’s call for privacy and integrity through regulations such as the General Data Protection Regularization (GDPR), anonymization that preserve useful information becomes important.This Thesis investigates the potential and possible limitation of anonymizing faces without destroying the aforementioned useful information. The base approach to achieve this is through face swapping and face manipulation, where the current research focus on changing the face (or identity) while keeping the original attribute information. All while being incorporated and consistent in an image and/or video. Specifically, will this Thesis demonstrate how target-oriented and subject-agnostic face swapping methodologies can be utilized for realistic anonymization that preserves attributes. Thru this, this Thesis points out several approaches that is: 1) controllable, meaning the proposed models do not naively changes the identity. Meaning that what kind of change of identity and magnitude is adjustable, thus also tunable to guarantee anonymization. 2) subject-agnostic, meaning that the models can handle any identity. 3) fast, meaning that the models is able to run efficiently. Thus having the potential of running in real-time. The end product consist of an anonymizer that achieved state-of-the-art performance on identity transfer, pose retention and expression retention while providing a realism.Apart of identity manipulation, the Thesis demonstrate potential security issues. Specifically reconstruction attacks, where a bad-actor model learns convolutional traces/patterns in the anonymized images in such a way that it is able to completely reconstruct the original identity. The bad-actor networks is able to do this with simple black-box access of the anonymization model by constructing a pair-wise dataset of unanonymized and anonymized faces. To alleviate this issue, different defense measures that disrupts the traces in the anonymized image was investigated. The main take away from this, is that naively using what qualitatively looks convincing of hiding an identity is not necessary the case at all. Making robust quantitative evaluations important.
  •  
4.
  • Rosberg, Felix, et al. (författare)
  • FaceDancer : Pose- and Occlusion-Aware High Fidelity Face Swapping
  • 2023
  • Ingår i: Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023. - Piscataway : IEEE. - 9781665493468 ; , s. 3443-3452
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identityn transfer, while having significantly better pose preservation than most of the previous methods. © 2023 IEEE.
  •  
5.
  • Rosberg, Felix, et al. (författare)
  • FIVA : Facial Image and Video Anonymization and Anonymization Defense
  • 2023
  • Ingår i: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). - Los Alamitos, CA : IEEE. - 9798350307443 ; , s. 362-371
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we present a new approach for facial anonymization in images and videos, abbreviated as FIVA. Our proposed method is able to maintain the same face anonymization consistently over frames with our suggested identity-tracking and guarantees a strong difference from the original face. FIVA allows for 0 true positives for a false acceptance rate of 0.001. Our work considers the important security issue of reconstruction attacks and investigates adversarial noise, uniform noise, and parameter noise to disrupt reconstruction attacks. In this regard, we apply different defense and protection methods against these privacy threats to demonstrate the scalability of FIVA. On top of this, we also show that reconstruction attack models can be used for detection of deep fakes. Last but not least, we provide experimental results showing how FIVA can even enable face swapping, which is purely trained on a single target image. © 2023 IEEE.
  •  
6.
  • Svanström, Fredrik, et al. (författare)
  • A dataset for multi-sensor drone detection
  • 2021
  • Ingår i: Data in Brief. - Amsterdam : Elsevier Inc.. - 2352-3409. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of small and remotely controlled unmanned aerial vehicles (UAVs), referred to as drones, has increased dramatically in recent years, both for professional and recreative purposes. This goes in parallel with (intentional or unintentional) misuse episodes, with an evident threat to the safety of people or facilities [1]. As a result, the detection of UAV has also emerged as a research topic [2]. Most of the existing studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the employed dataset. The lack of proper UAV detection studies employing thermal infrared cameras is also acknowledged as an issue, despite its success in detecting other types of targets [2]. Beside, we have not found any previous study that addresses the detection task as a function of distance to the target. Sensor fusion is indicated as an open research issue as well to achieve better detection results in comparison to a single sensor, although research in this direction is scarce too [3–6]. To help in counteracting the mentioned issues and allow fundamental studies with a common public benchmark, we contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files. The database includes three different drones, a small-sized model (Hubsan H107D+), a medium-sized drone (DJI Flame Wheel in quadcopter configuration), and a performance-grade model (DJI Phantom 4 Pro). It also includes other flying objects that can be mistakenly detected as drones, such as birds, airplanes or helicopters. In addition to using several different sensors, the number of classes is higher than in previous studies [4]. The video part contains 650 infrared and visible videos (365 IR and 285 visible) of drones, birds, airplanes and helicopters. Each clip is of ten seconds, resulting in a total of 203,328 annotated frames. The database is complemented with 90 audio files of the classes drones, helicopters and background noise. To allow studies as a function of the sensor-to-target distance, the dataset is divided into three categories (Close, Medium, Distant) according to the industry-standard Detect, Recognize and Identify (DRI) requirements [7], built on the Johnson criteria [8]. Given that the drones must be flown within visual range due to regulations, the largest sensor-to-target distance for a drone in the dataset is 200 m, and acquisitions are made in daylight. The data has been obtained at three airports in Sweden: Halmstad Airport (IATA code: HAD/ICAO code: ESMT), Gothenburg City Airport (GSE/ESGP) and Malmö Airport (MMX/ESMS). The acquisition sensors are mounted on a pan-tilt platform that steers the cameras to the objects of interest. All sensors and the platform are controlled with a standard laptop vis a USB hub.
  •  
7.
  • Svanström, Fredrik, et al. (författare)
  • Drone Detection and Tracking in Real-Time by Fusion of Different Sensing Modalities
  • 2022
  • Ingår i: Drones. - Basel : MDPI. - 2504-446X. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic detection of flying drones is a key issue where its presence, especially if unauthorized, can create risky situations or compromise security. Here, we design and evaluate a multi-sensor drone detection system. In conjunction with standard video cameras and microphone sensors, we explore the use of thermal infrared cameras, pointed out as a feasible and promising solution that is scarcely addressed in the related literature. Our solution integrates a fish-eye camera as well to monitor a wider part of the sky and steer the other cameras towards objects of interest. The sensing solutions are complemented with an ADS-B receiver, a GPS receiver, and a radar module. However, our final deployment has not included the latter due to its limited detection range. The thermal camera is shown to be a feasible solution as good as the video camera, even if the camera employed here has a lower resolution. Two other novelties of our work are the creation of a new public dataset of multi-sensor annotated data that expands the number of classes compared to existing ones, as well as the study of the detector performance as a function of the sensor-to-target distance. Sensor fusion is also explored, showing that the system can be made more robust in this way, mitigating false detections of the individual sensors. © 2022 by the authors.
  •  
8.
  • Svanström, Fredrik, et al. (författare)
  • Real-Time Drone Detection and Tracking With Visible, Thermal and Acoustic Sensors
  • 2021
  • Ingår i: 2020 25th International Conference on Pattern Recognition (ICPR). - : IEEE. - 9781728188089 - 9781728188096 ; , s. 7265-7272
  • Konferensbidrag (refereegranskat)abstract
    • TThis paper explores the process of designing an automatic multi-sensor drone detection system. Besides the common video and audio sensors, the system also includes a thermal infrared camera, which is shown to be a feasible solution to the drone detection task. Even with slightly lower resolution, the performance is just as good as a camera in visible range. The detector performance as a function of the sensor-to-target distance is also investigated. In addition, using sensor fusion, the system is made more robust than the individual sensors, helping to reduce false detections. To counteract the lack of public datasets, a novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented 1.1. https://github.com/DroneDetectionThesis/Drone-detection-dataset. The database is complemented with an audio dataset of the classes drones, helicopters and background noise. © 2020 IEEE
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy